Exam I, MTH 512, Spring 2015

Ayman Badawi

QUESTION 1. (i) Let $T: V \longrightarrow V$ be a linear transformation such that V is finite dimensional. Let $b \in R$. Prove that there is a number $a \in R$ such that $|a-b|<0.001$ and $T-a I$ is one-to-one (injective).
sketch proof: Choose $d \in R$ such that $|d-b|<0.001$. Since V is finite dimensional, T has finitely many eigenvalues. Since there are infinitely many numbers between d and b, there is a number, say a, such that a is not an eigenvalue of T. It is clear that $|a-b|<0.001$. Since a is not an eigenvalue of T, we know that T is one-to-one.
(ii) Let $T: V \longrightarrow V$ be a linear transformation. Assume v, w are nonzero vectors in V such that $T(v)=3 w$ and $T(w)=3 v$. Prove that 3 or -3 is an eigenvalue of T.
sketch proof: It is clear that $T(v+w)=3(v+w)$. If $v+w$ is not O_{V}, then $\mathbf{3}$ is an eigenvalue of T. Hence assume that $v+w=O_{V}$. Then $v=-w$. Thus $T(v)=T(-w)=-3 v$. Thus -3 is an eigenvalue of T.
(iii) Let $T: V \longrightarrow V$ be a linear transformation. Assume that $u, v, u+v$ are eigenvectors of T. Prove that u and v are eigenvectors of T corresponding to the same eigenvalue of T.
sketch proof: Given $T(u+v)=a(u+v)=a u+a v, T(u)=a_{1} u$, and $T(v)=a_{2} v$ for some real numbers a, a_{1}, a_{2}. We show $a_{1}=a_{2}$. Thus $T(u+v)=a u+a v=T(u)+T(v)=a_{1} u+a_{2} v$. Thus $\left(a-a_{1}\right) v+\left(a-a_{2}\right) u=$ 0_{V}. We consider two cases. Case I. Suppose that u, v independent. Then $a-a_{1}=a-a_{2}=0$. Thus $a_{1}=a=a_{2}$ and we are done. Assume that u, v are dependent. Then $u=d v$ for some nonzero $d \in R$. Thus $a_{1} u=T(u)=T(d v)=d a_{2} v=a_{2} d v=a_{2} u$. Hence $\left(a_{1}-a_{2}\right) u=O_{V}$. Since u is a nonzero vector, $a_{1}-a_{2}=0$. Thus $a_{1}=a_{2}$.
(iv) Let A be an $n \times n$ matrix such that the sum of the entries in each row of A equals 4 . Prove that 4 is an eigenvalue of A. Find an eigenvector of A that corresponds to the eigenvalue 4 .
sketch proof: It is clear that $A \times$

$$
\left[\begin{array}{l}
1 \\
1 \\
\cdot \\
\cdot \\
\cdot \\
1
\end{array}\right]=\left[\begin{array}{l}
4 \\
4 \\
\cdot \\
\cdot \\
\cdot \\
4
\end{array}\right]=4\left[\begin{array}{l}
1 \\
1 \\
\cdot \\
\cdot \\
\cdot \\
1
\end{array}\right] . \text { Thus } 4 \text { is an eigenvalue of } A
$$

(v) Let A be a 4×4 matrix. Given 2,3 are eigenvalues of A such that $E_{2}=\{(a, b, 0,0) \mid a, b \in R\}$ and $E_{3}=$ $\{(0,0, c, d) \mid c, d \in R\}$. Find $C_{A}(\alpha)$. Find the matrix A. If it is impossible to determine A, then explain.
comment: No ideas, just trivial and typical calculations... all of you got it right.
(vi) Let $T: P_{3} \longrightarrow P_{3}$ be a linear transformation such that $T(x)=4 x, T\left(x^{2}\right)=2 x$, and $T(6)=12$. Describe all elements in P_{3} that have image $x+1$ under T.
sketch proof: This particular question can be done by staring and simple observation. Observe $T(1)=2$. Note that $\operatorname{Range}(T)=\operatorname{span}\{2,2 x, 4 x\}=\operatorname{span}\{1,2 x\}$. Thus $\operatorname{dim}(\operatorname{Range}(T))=2$. Since $\operatorname{dim}(\operatorname{Ker}(T))+$ $\operatorname{dim}(\operatorname{Range}(T))=3$, we conclude that $\operatorname{dim}(\operatorname{Ker}(T))=1$. Since $T(x)=T\left(2 x^{2}\right)$, we have $T\left(x-2 x^{2}\right)=0$. Thus $\operatorname{Ker}(T)=\operatorname{span}\left\{x-2 x^{2}\right\}$. Now just find one element say v such that $T(v)=x+1$. By staring, $v=\frac{1}{2} x^{2}+\frac{1}{2}$ or you may select $v=\frac{1}{4} x+\frac{1}{2}$. Thus $\{d+v \mid d \in \operatorname{Ker}(T)\}$ is the set of all elements in P_{3} that have image $x+1$ under T.
(vii) Let $T: P_{3} \longrightarrow P_{3}$ such that $T\left(a x^{2}+b x+c\right)=(a+3 b+c) x^{2}+(2 b+c) x+3 c$. Is A diagnolizable?. If yes, then find a diagonal matrix D and an invertible matrix W such that $W^{-1} A W=D$.
sketch proof: Typical question...all of you did the calculations
(viii) Let $T: P_{3} \longrightarrow P_{3}$ be a linear transformation. Given $\sqrt{2}, \sqrt[3]{2}$, and $\sqrt[4]{2}$ are eigenvalues of T. Show that there must exist a polynomial $f(x) \in P_{3}$ such that $T(f(x))-7 f(x)=\sqrt{2} x^{2}+\sqrt[3]{2} x+\sqrt[4]{2}$
sketch proof: Since $\operatorname{dim}\left(P_{3}\right)=3$ and P_{3} cannot have more than 3 eigenvalues, we conclude that 7 is not an eigenvalue of T. Hence we know that the linear transformation $K: P_{3} \longrightarrow P_{3}$, where $K(L(x))=T(L(x))-$ $7 I(L(x))=T(L(x))-7 L(x)$ for every $L(x) \in P_{3}$, is one-to-one, and thus is ONTO (surjective) (since P_{3} is finite dimensional). Since K is onto and $w(x)=\sqrt{2} x^{2}+\sqrt[3]{2} x+\sqrt[4]{2} \in \operatorname{Range}(K)=P_{3}$, we conclude there is a polynomial $f(x) \in P_{3}$ such that $K(f(x))=T(f(x))-7 f(x)=w(x)=\sqrt{2} x^{2}+\sqrt[3]{2} x+\sqrt[4]{2}$

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

